Nuprl Lemma : fn_array_wf
∀[Val:Type]. ∀[n:ℕ].  (fn_array{i:l}(Val;n) ∈ array{i:l}(Val;n))
Proof
Definitions occuring in Statement : 
fn_array: fn_array{i:l}(Val;n), 
array: array{i:l}(Val;n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
fn_array: fn_array{i:l}(Val;n), 
array: array{i:l}(Val;n), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
mk_array: mk_array(Arr;idx;upd;newarray), 
nat: ℕ, 
int_seg: {i..j-}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exposed-it: exposed-it, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False
Lemmas referenced : 
int_seg_wf, 
istype-universe, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
ifthenelse_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_pairEquality_alt, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lambdaEquality_alt, 
applyEquality, 
functionIsType, 
inhabitedIsType, 
universeIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
axiomEquality, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation_alt, 
equalityIsType2, 
baseApply, 
baseClosed, 
intEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
productIsType, 
isectIsType, 
universeEquality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].    (fn\_array\{i:l\}(Val;n)  \mmember{}  array\{i:l\}(Val;n))
Date html generated:
2019_10_15-AM-10_59_29
Last ObjectModification:
2018_10_11-PM-06_55_12
Theory : monads
Home
Index