Nuprl Lemma : Moessner-alg_wf

[n,k:ℕ].  (Moessner-alg(k;n) ∈ ℤ)


Proof




Definitions occuring in Statement :  Moessner-alg: Moessner-alg(k;n) nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Moessner-alg: Moessner-alg(k;n) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A
Lemmas referenced :  Longs-algorithm_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_wf false_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality hypothesisEquality natural_numberEquality hypothesis lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination because_Cache equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination intEquality dependent_set_memberEquality independent_pairFormation axiomEquality isect_memberEquality

Latex:
\mforall{}[n,k:\mBbbN{}].    (Moessner-alg(k;n)  \mmember{}  \mBbbZ{})



Date html generated: 2018_05_21-PM-10_15_48
Last ObjectModification: 2017_07_26-PM-06_35_53

Theory : power!series


Home Index