Nuprl Lemma : fps-elim-x-atom
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x,y:X].
  (atom(y)(x:=0) = if eq x y then 0 else atom(y) fi  ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement : 
fps-elim-x: f(x:=0), 
fps-atom: atom(x), 
fps-zero: 0, 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
apply: f a, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
deq: EqDecider(T), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
fps-atom: atom(x), 
fps-zero: 0, 
fps-coeff: f[b], 
fps-elim-x: f(x:=0), 
fps-single: <c>, 
fps-elim: fps-elim(x), 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
eqof: eqof(d), 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
crng: CRng, 
rng: Rng, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
fps-ext, 
fps-elim-x_wf, 
fps-atom_wf, 
ifthenelse_wf, 
power-series_wf, 
fps-zero_wf, 
bag-deq-member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-deq-member, 
safe-assert-deq, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bag-eq_wf, 
single-bag_wf, 
assert-bag-eq, 
bag_wf, 
rng_zero_wf, 
bag-member_wf, 
rng_one_wf, 
crng_wf, 
deq_wf, 
bag-member-single, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
isect_memberEquality, 
axiomEquality, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x,y:X].
    (atom(y)(x:=0)  =  if  eq  x  y  then  0  else  atom(y)  fi  )
 Date html generated: 
2018_05_21-PM-09_59_27
 Last ObjectModification: 
2017_07_26-PM-06_33_52
Theory : power!series
Home
Index