Nuprl Lemma : grp_op_preserves_lt_qorder

[u,v,w:ℚ].  v < supposing v < w


Proof




Definitions occuring in Statement :  qless: r < s qadd: s rationals: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) infix_ap: y qless: r < s
Lemmas referenced :  grp_op_preserves_lt qadd_grp_wf2 ocgrp_subtype_ocmon
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[u,v,w:\mBbbQ{}].    u  +  v  <  u  +  w  supposing  v  <  w



Date html generated: 2020_05_20-AM-09_15_11
Last ObjectModification: 2020_01_25-AM-11_22_14

Theory : rationals


Home Index