Nuprl Lemma : grp_op_preserves_lt_qorder
∀[u,v,w:ℚ].  u + v < u + w supposing v < w
Proof
Definitions occuring in Statement : 
qless: r < s
, 
qadd: r + s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
qadd_grp: <ℚ+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
qless: r < s
Lemmas referenced : 
grp_op_preserves_lt, 
qadd_grp_wf2, 
ocgrp_subtype_ocmon
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
sqequalRule
Latex:
\mforall{}[u,v,w:\mBbbQ{}].    u  +  v  <  u  +  w  supposing  v  <  w
Date html generated:
2020_05_20-AM-09_15_11
Last ObjectModification:
2020_01_25-AM-11_22_14
Theory : rationals
Home
Index