Nuprl Lemma : grp_op_preserves_lt
∀[g:OCMon]. ∀[u,v,w:|g|].  (u * v) < (u * w) supposing v < w
Proof
Definitions occuring in Statement : 
grp_lt: a < b, 
ocmon: OCMon, 
grp_op: *, 
grp_car: |g|, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
grp_lt: a < b, 
set_lt: a <p b, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
infix_ap: x f y, 
subtype_rel: A ⊆r B, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
implies: P ⇒ Q, 
prop: ℙ, 
omon: OMon, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
so_apply: x[s], 
cand: A c∧ B, 
rev_uimplies: rev_uimplies(P;Q), 
not: ¬A, 
false: False
Lemmas referenced : 
assert_witness, 
set_blt_wf, 
oset_of_ocmon_wf0, 
grp_op_wf, 
grp_car_wf, 
grp_lt_wf, 
ocmon_wf, 
grp_lt_is_sp_of_leq_a, 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
uall_wf, 
monot_wf, 
grp_op_preserves_le, 
grp_leq_wf, 
grp_leq_weakening_eq, 
ocmon_cancel, 
grp_leq_antisymmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
lambdaEquality, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality, 
functionEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
setEquality, 
independent_pairFormation, 
voidElimination
Latex:
\mforall{}[g:OCMon].  \mforall{}[u,v,w:|g|].    (u  *  v)  <  (u  *  w)  supposing  v  <  w
Date html generated:
2017_10_01-AM-08_15_08
Last ObjectModification:
2017_02_28-PM-02_00_24
Theory : groups_1
Home
Index