Step
*
1
1
1
1
1
of Lemma
immediate-rc-face-implies
.....assertion.....
1. k : ℕ
2. f : ℚCube(k)
3. c : ℚCube(k)
4. 0 < Σ(dim(c i) | i < k)
5. f ≤ c
6. dim(f) = (dim(c) - 1) ∈ ℤ
7. ↑Inhabited(c)
8. ∀i:ℕk. (↑Inhabited(c i))
9. ∀i:ℕk
(((f i) = (c i) ∈ ℚInterval)
∨ ((dim(c i) = 1 ∈ ℤ) ∧ (((f i) = [fst((c i))] ∈ ℚInterval) ∨ ((f i) = [snd((c i))] ∈ ℚInterval))))
10. i : ℕk
11. dim(c i) = 1 ∈ ℤ
12. ((f i) = [fst((c i))] ∈ ℚInterval) ∨ ((f i) = [snd((c i))] ∈ ℚInterval)
13. dim(c i) = 1 ∈ ℤ
14. j : ℕk
15. ¬(j = i ∈ ℤ)
16. dim(c j) = 1 ∈ ℤ
17. ((f j) = [fst((c j))] ∈ ℚInterval) ∨ ((f j) = [snd((c j))] ∈ ℚInterval)
18. dim(f i) = 0 ∈ ℤ
19. dim(f j) = 0 ∈ ℤ
⊢ dim(f) < dim(c) - 1
BY
{ (Unfold `rat-cube-dimension` 0 THEN (Subst' Inhabited(c) ~ tt 0 THENA Auto) THEN Reduce 0 THEN AutoSplit) }
1
1. k : ℕ
2. f : ℚCube(k)
3. c : ℚCube(k)
4. 0 < Σ(dim(c i) | i < k)
5. f ≤ c
6. dim(f) = (dim(c) - 1) ∈ ℤ
7. ↑Inhabited(c)
8. ∀i:ℕk. (↑Inhabited(c i))
9. ∀i:ℕk
(((f i) = (c i) ∈ ℚInterval)
∨ ((dim(c i) = 1 ∈ ℤ) ∧ (((f i) = [fst((c i))] ∈ ℚInterval) ∨ ((f i) = [snd((c i))] ∈ ℚInterval))))
10. i : ℕk
11. dim(c i) = 1 ∈ ℤ
12. ((f i) = [fst((c i))] ∈ ℚInterval) ∨ ((f i) = [snd((c i))] ∈ ℚInterval)
13. dim(c i) = 1 ∈ ℤ
14. j : ℕk
15. ¬(j = i ∈ ℤ)
16. dim(c j) = 1 ∈ ℤ
17. ((f j) = [fst((c j))] ∈ ℚInterval) ∨ ((f j) = [snd((c j))] ∈ ℚInterval)
18. dim(f i) = 0 ∈ ℤ
19. dim(f j) = 0 ∈ ℤ
20. ↑Inhabited(f)
⊢ Σ(dim(f i) | i < k) < Σ(dim(c i) | i < k) - 1
Latex:
Latex:
.....assertion.....
1. k : \mBbbN{}
2. f : \mBbbQ{}Cube(k)
3. c : \mBbbQ{}Cube(k)
4. 0 < \mSigma{}(dim(c i) | i < k)
5. f \mleq{} c
6. dim(f) = (dim(c) - 1)
7. \muparrow{}Inhabited(c)
8. \mforall{}i:\mBbbN{}k. (\muparrow{}Inhabited(c i))
9. \mforall{}i:\mBbbN{}k. (((f i) = (c i)) \mvee{} ((dim(c i) = 1) \mwedge{} (((f i) = [fst((c i))]) \mvee{} ((f i) = [snd((c i))]))))
10. i : \mBbbN{}k
11. dim(c i) = 1
12. ((f i) = [fst((c i))]) \mvee{} ((f i) = [snd((c i))])
13. dim(c i) = 1
14. j : \mBbbN{}k
15. \mneg{}(j = i)
16. dim(c j) = 1
17. ((f j) = [fst((c j))]) \mvee{} ((f j) = [snd((c j))])
18. dim(f i) = 0
19. dim(f j) = 0
\mvdash{} dim(f) < dim(c) - 1
By
Latex:
(Unfold `rat-cube-dimension` 0
THEN (Subst' Inhabited(c) \msim{} tt 0 THENA Auto)
THEN Reduce 0
THEN AutoSplit)
Home
Index