Step
*
1
1
1
1
of Lemma
implies-qle
1. a : ℚ
2. b : ℚ
3. ∀n:ℕ+. (a ≤ (b + (1/n)))
4. b < a
5. 0 < a - b
6. ¬((a - b) = 0 ∈ ℚ)
7. n : ℕ
8. (1/a - b) ≤ n
9. 0 < n + 1
10. ¬((n + 1) = 0 ∈ ℚ)
⊢ False
BY
{ ((InstHyp [⌜n + 1⌝] 3⋅ THENA (Auto THEN (RWO "qadd-add" 0 THEN Auto)⋅))
THEN Thin 3
THEN ((InstLemma `qmul_preserves_qle` [⌜(1/a - b)⌝;⌜n⌝;⌜a - b⌝]⋅ THENM ThinTrivial) THENA Auto)
THEN ((InstLemma `qmul_preserves_qle` [⌜a⌝;⌜b + (1/n + 1)⌝;⌜n + 1⌝]⋅ THENM ThinTrivial)
THENA (Auto THEN RWO "qadd-add" 0 THEN Auto)
)) }
1
1. a : ℚ
2. b : ℚ
3. b < a
4. 0 < a - b
5. ¬((a - b) = 0 ∈ ℚ)
6. n : ℕ
7. (1/a - b) ≤ n
8. 0 < n + 1
9. ¬((n + 1) = 0 ∈ ℚ)
10. a ≤ (b + (1/n + 1))
11. ((a - b) * (1/a - b)) ≤ ((a - b) * n)
12. ((n + 1) * a) ≤ ((n + 1) * (b + (1/n + 1)))
⊢ False
Latex:
Latex:
1. a : \mBbbQ{}
2. b : \mBbbQ{}
3. \mforall{}n:\mBbbN{}\msupplus{}. (a \mleq{} (b + (1/n)))
4. b < a
5. 0 < a - b
6. \mneg{}((a - b) = 0)
7. n : \mBbbN{}
8. (1/a - b) \mleq{} n
9. 0 < n + 1
10. \mneg{}((n + 1) = 0)
\mvdash{} False
By
Latex:
((InstHyp [\mkleeneopen{}n + 1\mkleeneclose{}] 3\mcdot{} THENA (Auto THEN (RWO "qadd-add" 0 THEN Auto)\mcdot{}))
THEN Thin 3
THEN ((InstLemma `qmul\_preserves\_qle` [\mkleeneopen{}(1/a - b)\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}a - b\mkleeneclose{}]\mcdot{} THENM ThinTrivial) THENA Auto)
THEN ((InstLemma `qmul\_preserves\_qle` [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b + (1/n + 1)\mkleeneclose{};\mkleeneopen{}n + 1\mkleeneclose{}]\mcdot{} THENM ThinTrivial)
THENA (Auto THEN RWO "qadd-add" 0 THEN Auto)
))
Home
Index