Step
*
2
1
of Lemma
member-iter-subdiv-sub-cube
1. k : ℕ
2. n : ℕ
3. j : ℤ
4. [%1] : 0 < j
5. ∀K:n-dim-complex. ∀c:ℚCube(k). ((c ∈ K'^(j - 1))
⇒ (∃a:ℚCube(k). ((a ∈ K) ∧ rat-sub-cube(k;c;a))))
6. K : n-dim-complex
7. c : ℚCube(k)
8. (c ∈ (K'^(j - 1))')
9. a : ℚCube(k)
10. (a ∈ K'^(j - 1))
11. rat-sub-cube(k;c;a)
12. ∃a1:ℚCube(k). ((a1 ∈ K) ∧ rat-sub-cube(k;a;a1))
⊢ ∃a:ℚCube(k). ((a ∈ K) ∧ rat-sub-cube(k;c;a))
BY
{ (ParallelLast THEN Auto) }
1
1. k : ℕ
2. n : ℕ
3. j : ℤ
4. [%1] : 0 < j
5. ∀K:n-dim-complex. ∀c:ℚCube(k). ((c ∈ K'^(j - 1))
⇒ (∃a:ℚCube(k). ((a ∈ K) ∧ rat-sub-cube(k;c;a))))
6. K : n-dim-complex
7. c : ℚCube(k)
8. (c ∈ (K'^(j - 1))')
9. a : ℚCube(k)
10. (a ∈ K'^(j - 1))
11. rat-sub-cube(k;c;a)
12. a1 : ℚCube(k)
13. (a1 ∈ K)
14. rat-sub-cube(k;a;a1)
15. (a1 ∈ K)
⊢ rat-sub-cube(k;c;a1)
Latex:
Latex:
1. k : \mBbbN{}
2. n : \mBbbN{}
3. j : \mBbbZ{}
4. [\%1] : 0 < j
5. \mforall{}K:n-dim-complex. \mforall{}c:\mBbbQ{}Cube(k).
((c \mmember{} K'\^{}(j - 1)) {}\mRightarrow{} (\mexists{}a:\mBbbQ{}Cube(k). ((a \mmember{} K) \mwedge{} rat-sub-cube(k;c;a))))
6. K : n-dim-complex
7. c : \mBbbQ{}Cube(k)
8. (c \mmember{} (K'\^{}(j - 1))')
9. a : \mBbbQ{}Cube(k)
10. (a \mmember{} K'\^{}(j - 1))
11. rat-sub-cube(k;c;a)
12. \mexists{}a1:\mBbbQ{}Cube(k). ((a1 \mmember{} K) \mwedge{} rat-sub-cube(k;a;a1))
\mvdash{} \mexists{}a:\mBbbQ{}Cube(k). ((a \mmember{} K) \mwedge{} rat-sub-cube(k;c;a))
By
Latex:
(ParallelLast THEN Auto)
Home
Index