Step
*
1
1
1
1
1
of Lemma
positive-rat-cube-dimension
1. k : ℤ
2. [%1] : 0 < k
3. ∀c:ℚCube(k - 1). (0 < Σ(dim(c i) | i < k - 1)
⇒ (∃i:ℕk - 1. (dim(c i) = 1 ∈ ℤ)))
4. c : ℚCube(k)
5. 0 < Σ(dim(c i) | i < k - 1) + dim(c (k - 1))
6. 0 ≤ Σ(dim(c i) | i < k - 1)
7. 0 < Σ(dim(c i) | i < k - 1)
⊢ ∃i:ℕk. (dim(c i) = 1 ∈ ℤ)
BY
{ (D 3 With ⌜c⌝ THENA (All (Unfold `rational-cube`) THEN Auto)) }
1
1. k : ℤ
2. [%1] : 0 < k
3. c : ℚCube(k)
4. 0 < Σ(dim(c i) | i < k - 1) + dim(c (k - 1))
5. 0 ≤ Σ(dim(c i) | i < k - 1)
6. 0 < Σ(dim(c i) | i < k - 1)
7. 0 < Σ(dim(c i) | i < k - 1)
⇒ (∃i:ℕk - 1. (dim(c i) = 1 ∈ ℤ))
⊢ ∃i:ℕk. (dim(c i) = 1 ∈ ℤ)
Latex:
Latex:
1. k : \mBbbZ{}
2. [\%1] : 0 < k
3. \mforall{}c:\mBbbQ{}Cube(k - 1). (0 < \mSigma{}(dim(c i) | i < k - 1) {}\mRightarrow{} (\mexists{}i:\mBbbN{}k - 1. (dim(c i) = 1)))
4. c : \mBbbQ{}Cube(k)
5. 0 < \mSigma{}(dim(c i) | i < k - 1) + dim(c (k - 1))
6. 0 \mleq{} \mSigma{}(dim(c i) | i < k - 1)
7. 0 < \mSigma{}(dim(c i) | i < k - 1)
\mvdash{} \mexists{}i:\mBbbN{}k. (dim(c i) = 1)
By
Latex:
(D 3 With \mkleeneopen{}c\mkleeneclose{} THENA (All (Unfold `rational-cube`) THEN Auto))
Home
Index