Nuprl Lemma : q-floor-property
∀[r:ℚ]. (([r] ≤ r) ∧ r < [r] + 1)
Proof
Definitions occuring in Statement : 
q-floor: [r], 
qle: r ≤ s, 
qless: r < s, 
qadd: r + s, 
rationals: ℚ, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
q-floor: [r], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
pi1: fst(t), 
cand: A c∧ B, 
guard: {T}, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
true: True, 
sq_stable: SqStable(P), 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rat-int-part_wf2, 
set_wf, 
rationals_wf, 
qle_wf, 
qless_wf, 
equal_wf, 
qadd_wf, 
qle_witness, 
q-floor_wf, 
int-subtype-rationals, 
qless_witness, 
squash_wf, 
qadd_preserves_qle, 
qadd_preserves_qless, 
qmul_wf, 
sq_stable__and, 
sq_stable_from_decidable, 
decidable__qle, 
decidable__qless, 
true_wf, 
qadd_comm_q, 
qadd_ac_1_q, 
qinverse_q, 
qadd_inv_assoc_q, 
iff_weakening_equal, 
mon_ident_q
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
productEquality, 
intEquality, 
setEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
spreadEquality, 
productElimination, 
independent_pairEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
isect_memberEquality, 
independent_isectElimination, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairFormation, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeEquality
Latex:
\mforall{}[r:\mBbbQ{}].  (([r]  \mleq{}  r)  \mwedge{}  r  <  [r]  +  1)
Date html generated:
2018_05_22-AM-00_28_01
Last ObjectModification:
2017_07_26-PM-06_56_58
Theory : rationals
Home
Index