Nuprl Lemma : q-square-positive
∀[q:ℚ]. 0 < q * q supposing ¬(q = 0 ∈ ℚ)
Proof
Definitions occuring in Statement : 
qless: r < s, 
qmul: r * s, 
rationals: ℚ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
or: P ∨ Q, 
not: ¬A, 
false: False, 
rev_implies: P ⇐ Q
Lemmas referenced : 
q-square-non-neg, 
qless_witness, 
qmul_wf, 
not_wf, 
equal_wf, 
rationals_wf, 
qle_iff_lt_or_eq_qorder, 
int-subtype-rationals, 
qmul-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
productElimination, 
unionElimination, 
voidElimination
Latex:
\mforall{}[q:\mBbbQ{}].  0  <  q  *  q  supposing  \mneg{}(q  =  0)
Date html generated:
2016_05_15-PM-10_59_02
Last ObjectModification:
2015_12_27-PM-07_51_06
Theory : rationals
Home
Index