Nuprl Lemma : qmul-zero
∀a,b:ℚ.  ((a * b) = 0 ∈ ℚ 
⇐⇒ (a = 0 ∈ ℚ) ∨ (b = 0 ∈ ℚ))
Proof
Definitions occuring in Statement : 
qmul: r * s
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
qeq: qeq(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
equal-wf-T-base, 
rationals_wf, 
qmul_wf, 
or_wf, 
decidable__equal_rationals, 
qinv_wf, 
assert-qeq, 
assert_wf, 
qeq_wf2, 
not_wf, 
int-subtype-rationals, 
equal_wf, 
qmul_ident, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
qmul_inv, 
qmul_zero_qrng, 
qmul_assoc_qrng, 
qmul_ac_1_qrng, 
qmul_comm_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
baseClosed, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
inlFormation, 
sqequalRule, 
inrFormation, 
hyp_replacement, 
applyLambdaEquality, 
independent_isectElimination, 
addLevel, 
impliesFunctionality, 
productElimination, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality, 
independent_functionElimination, 
universeEquality, 
voidElimination
Latex:
\mforall{}a,b:\mBbbQ{}.    ((a  *  b)  =  0  \mLeftarrow{}{}\mRightarrow{}  (a  =  0)  \mvee{}  (b  =  0))
Date html generated:
2018_05_21-PM-11_56_03
Last ObjectModification:
2017_07_26-PM-06_46_36
Theory : rationals
Home
Index