Nuprl Lemma : qmul-zero

a,b:ℚ.  ((a b) 0 ∈ ℚ ⇐⇒ (a 0 ∈ ℚ) ∨ (b 0 ∈ ℚ))


Proof




Definitions occuring in Statement :  qmul: s rationals: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q decidable: Dec(P) or: P ∨ Q guard: {T} uimplies: supposing a not: ¬A uiff: uiff(P;Q) subtype_rel: A ⊆B true: True squash: T qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b false: False
Lemmas referenced :  equal-wf-T-base rationals_wf qmul_wf or_wf decidable__equal_rationals qinv_wf assert-qeq assert_wf qeq_wf2 not_wf int-subtype-rationals equal_wf qmul_ident iff_weakening_equal squash_wf true_wf qmul_inv qmul_zero_qrng qmul_assoc_qrng qmul_ac_1_qrng qmul_comm_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality baseClosed because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination inlFormation sqequalRule inrFormation hyp_replacement applyLambdaEquality independent_isectElimination addLevel impliesFunctionality productElimination natural_numberEquality applyEquality lambdaEquality imageElimination equalityUniverse levelHypothesis imageMemberEquality independent_functionElimination universeEquality voidElimination

Latex:
\mforall{}a,b:\mBbbQ{}.    ((a  *  b)  =  0  \mLeftarrow{}{}\mRightarrow{}  (a  =  0)  \mvee{}  (b  =  0))



Date html generated: 2018_05_21-PM-11_56_03
Last ObjectModification: 2017_07_26-PM-06_46_36

Theory : rationals


Home Index