Nuprl Lemma : q-triangle-inequality2
∀[x,y,z:ℚ].  (|x - z| ≤ (|x - y| + |y - z|))
Proof
Definitions occuring in Statement : 
qabs: |r|, 
qle: r ≤ s, 
qsub: r - s, 
qadd: r + s, 
rationals: ℚ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
true: True, 
qsub: r - s, 
squash: ↓T, 
prop: ℙ, 
and: P ∧ Q, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q
Lemmas referenced : 
iff_weakening_equal, 
qadd_inv_assoc_q, 
qadd_ac_1_q, 
mon_assoc_q, 
true_wf, 
squash_wf, 
qle_wf, 
int-subtype-rationals, 
qmul_wf, 
rationals_wf, 
qadd_wf, 
qabs_wf, 
qle_witness, 
qsub_wf, 
q-triangle-inequality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
minusEquality, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[x,y,z:\mBbbQ{}].    (|x  -  z|  \mleq{}  (|x  -  y|  +  |y  -  z|))
Date html generated:
2016_05_15-PM-11_32_23
Last ObjectModification:
2016_01_16-PM-09_14_31
Theory : rationals
Home
Index