Nuprl Lemma : qabs-qle-zero
∀[r:ℚ]. uiff(|r| ≤ 0;r = 0 ∈ ℚ)
Proof
Definitions occuring in Statement : 
qabs: |r|, 
qle: r ≤ s, 
rationals: ℚ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
guard: {T}, 
qabs: |r|, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
qpositive: qpositive(r), 
btrue: tt, 
lt_int: i <z j, 
bfalse: ff, 
qmul: r * s, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A
Lemmas referenced : 
zero-qle-qabs, 
qle_wf, 
qabs_wf, 
int-subtype-rationals, 
qle_witness, 
rationals_wf, 
qabs-zero, 
qle_antisymmetry, 
qle-int, 
istype-false
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
universeIsType, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
equalityIstype, 
inhabitedIsType, 
baseClosed, 
sqequalBase, 
productElimination, 
independent_isectElimination, 
closedConclusion, 
lambdaFormation_alt, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[r:\mBbbQ{}].  uiff(|r|  \mleq{}  0;r  =  0)
Date html generated:
2019_10_16-PM-00_31_18
Last ObjectModification:
2018_11_26-PM-03_09_30
Theory : rationals
Home
Index