Nuprl Lemma : zero-qle-qabs

[r:ℚ]. (0 ≤ |r|)


Proof




Definitions occuring in Statement :  qabs: |r| qle: r ≤ s rationals: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qabs: |r| uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  guard: {T} subtype_rel: A ⊆B bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce qpositive_wf bool_wf eqtt_to_assert assert-qpositive qle_weakening_lt_qorder eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot qless_wf int-subtype-rationals qle_witness qabs_wf qless_trichot_qorder qle-iff qmul_wf qminus-positive or_wf equal-wf-base-T squash_wf true_wf qinv_id_q iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination natural_numberEquality applyEquality because_Cache dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination minusEquality addLevel orFunctionality baseClosed inlFormation inrFormation lambdaEquality imageElimination universeEquality imageMemberEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[r:\mBbbQ{}].  (0  \mleq{}  |r|)



Date html generated: 2018_05_21-PM-11_52_34
Last ObjectModification: 2017_07_26-PM-06_45_06

Theory : rationals


Home Index