Nuprl Lemma : zero-qle-qabs
∀[r:ℚ]. (0 ≤ |r|)
Proof
Definitions occuring in Statement : 
qabs: |r|, 
qle: r ≤ s, 
rationals: ℚ, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
qabs: |r|, 
uimplies: b supposing a, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
guard: {T}, 
subtype_rel: A ⊆r B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type, 
evalall-reduce, 
qpositive_wf, 
bool_wf, 
eqtt_to_assert, 
assert-qpositive, 
qle_weakening_lt_qorder, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
qless_wf, 
int-subtype-rationals, 
qle_witness, 
qabs_wf, 
qless_trichot_qorder, 
qle-iff, 
qmul_wf, 
qminus-positive, 
or_wf, 
equal-wf-base-T, 
squash_wf, 
true_wf, 
qinv_id_q, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
callbyvalueReduce, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
minusEquality, 
addLevel, 
orFunctionality, 
baseClosed, 
inlFormation, 
inrFormation, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[r:\mBbbQ{}].  (0  \mleq{}  |r|)
Date html generated:
2018_05_21-PM-11_52_34
Last ObjectModification:
2017_07_26-PM-06_45_06
Theory : rationals
Home
Index