Nuprl Lemma : qmul-not-zero
∀[a,b:ℚ]. uiff(¬((a * b) = 0 ∈ ℚ);(¬(a = 0 ∈ ℚ)) ∧ (¬(b = 0 ∈ ℚ)))
Proof
Definitions occuring in Statement :
qmul: r * s
,
rationals: ℚ
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
and: P ∧ Q
,
natural_number: $n
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
true: True
,
squash: ↓T
,
guard: {T}
,
iff: P
⇐⇒ Q
Lemmas referenced :
qmul_zero_qrng,
equal-wf-T-base,
qmul_wf,
rationals_wf,
not_wf,
qdiv_wf,
int-subtype-rationals,
equal_wf,
squash_wf,
true_wf,
qmul-qdiv-cancel4,
qmul_one_qrng,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
lambdaFormation,
thin,
sqequalHypSubstitution,
independent_functionElimination,
hypothesis,
extract_by_obid,
isectElimination,
hypothesisEquality,
productElimination,
hyp_replacement,
equalitySymmetry,
applyLambdaEquality,
because_Cache,
voidElimination,
baseClosed,
sqequalRule,
independent_pairEquality,
lambdaEquality,
dependent_functionElimination,
productEquality,
isect_memberEquality,
equalityTransitivity,
natural_numberEquality,
applyEquality,
independent_isectElimination,
imageElimination,
universeEquality,
imageMemberEquality
Latex:
\mforall{}[a,b:\mBbbQ{}]. uiff(\mneg{}((a * b) = 0);(\mneg{}(a = 0)) \mwedge{} (\mneg{}(b = 0)))
Date html generated:
2018_05_21-PM-11_51_26
Last ObjectModification:
2017_07_26-PM-06_44_31
Theory : rationals
Home
Index