Nuprl Lemma : qmul-qdiv-cancel4
∀[a,b,c:ℚ]. ((b/a) * a * c) = (b * c) ∈ ℚ supposing ¬(a = 0 ∈ ℚ)
Proof
Definitions occuring in Statement :
qdiv: (r/s)
,
qmul: r * s
,
rationals: ℚ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
natural_number: $n
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
equal_wf,
squash_wf,
true_wf,
qmul_assoc_qrng,
qdiv_wf,
qmul_wf,
iff_weakening_equal,
rationals_wf,
qmul-qdiv-cancel2,
not_wf,
equal-wf-T-base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
applyEquality,
thin,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
universeEquality,
because_Cache,
independent_isectElimination,
natural_numberEquality,
sqequalRule,
imageMemberEquality,
baseClosed,
productElimination,
independent_functionElimination,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[a,b,c:\mBbbQ{}]. ((b/a) * a * c) = (b * c) supposing \mneg{}(a = 0)
Date html generated:
2018_05_21-PM-11_51_00
Last ObjectModification:
2017_07_26-PM-06_44_16
Theory : rationals
Home
Index