Step
*
2
1
2
1
1
of Lemma
qsum-subsequence-qle
.....assertion.....
1. f : ℕ ⟶ ℚ
2. ∀n:ℕ. (0 ≤ f[n])
3. k : ℤ
4. 0 < k
5. ∀[g:ℕ(k - 1) + 1 ⟶ ℕ]
Σ0 ≤ i < k - 1. f[g i] ≤ Σ0 ≤ i < g (k - 1). f[i] supposing ∀n:ℕ(k - 1) + 1. ∀i:ℕn. g i < g n
6. g : ℕk + 1 ⟶ ℕ
7. ∀n:ℕk + 1. ∀i:ℕn. g i < g n
⊢ f[g (k - 1)] ≤ Σg (k - 1) ≤ i < g k. f[i]
BY
{ TACTIC:((InstLemma `summand-qle-sum` [⌜g (k - 1)⌝; ⌜g k⌝; ⌜λ2i.f[i]⌝; ⌜g (k - 1)⌝])⋅ THEN Auto) }
Latex:
Latex:
.....assertion.....
1. f : \mBbbN{} {}\mrightarrow{} \mBbbQ{}
2. \mforall{}n:\mBbbN{}. (0 \mleq{} f[n])
3. k : \mBbbZ{}
4. 0 < k
5. \mforall{}[g:\mBbbN{}(k - 1) + 1 {}\mrightarrow{} \mBbbN{}]
\mSigma{}0 \mleq{} i < k - 1. f[g i] \mleq{} \mSigma{}0 \mleq{} i < g (k - 1). f[i] supposing \mforall{}n:\mBbbN{}(k - 1) + 1. \mforall{}i:\mBbbN{}n. g i < g n
6. g : \mBbbN{}k + 1 {}\mrightarrow{} \mBbbN{}
7. \mforall{}n:\mBbbN{}k + 1. \mforall{}i:\mBbbN{}n. g i < g n
\mvdash{} f[g (k - 1)] \mleq{} \mSigma{}g (k - 1) \mleq{} i < g k. f[i]
By
Latex:
TACTIC:((InstLemma `summand-qle-sum` [\mkleeneopen{}g (k - 1)\mkleeneclose{}; \mkleeneopen{}g k\mkleeneclose{}; \mkleeneopen{}\mlambda{}\msubtwo{}i.f[i]\mkleeneclose{}; \mkleeneopen{}g (k - 1)\mkleeneclose{}])\mcdot{} THEN Auto)
Home
Index