Step
*
2
2
1
1
1
1
2
of Lemma
rat-complex-boundary-boundary
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. 2 ≤ n
5. ∀[L:ℚCube(k) List]. L ~ [] supposing ∀x:ℚCube(k). (¬(x ∈ L))
6. x : ℚCube(k)
7. ↑isOdd(||filter(λc.is-rat-cube-face(k;x;c);∂(K))||)
8. dim(x) = (n - 1 - 1) ∈ ℤ
9. Σ(||filter(λv.is-rat-cube-face(k;v;t);filter(λv.is-rat-cube-face(k;x;v);face-complex(k;K)))|| | t ∈ K)
= (Σ(||filter(λt.is-rat-cube-face(k;s;t);K)|| | s ∈ filter(λv.is-rat-cube-face(k;x;v);∂(K)))
  + Σ(||filter(λt.is-rat-cube-face(k;s;t);K)|| | s ∈ filter(λs.(¬bin-complex-boundary(k;s;K));
                                                            filter(λv.is-rat-cube-face(k;x;v);face-complex(k;K)))))
∈ ℤ
10. ↑isEven(Σ(||filter(λv.is-rat-cube-face(k;v;t);filter(λv.is-rat-cube-face(k;x;v);face-complex(k;K)))|| | t ∈ K))
⊢ False
BY
{ ((MoveToConcl (-1) THEN Fold `not` 0)
   THEN (RWO "odd-iff-not-even<" 0 THENA Auto)
   THEN HypSubst' (-1) 0
   THEN BLemma `odd-plus-even`
   THEN Auto) }
1
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. 2 ≤ n
5. ∀[L:ℚCube(k) List]. L ~ [] supposing ∀x:ℚCube(k). (¬(x ∈ L))
6. x : ℚCube(k)
7. ↑isOdd(||filter(λc.is-rat-cube-face(k;x;c);∂(K))||)
8. dim(x) = (n - 1 - 1) ∈ ℤ
9. Σ(||filter(λv.is-rat-cube-face(k;v;t);filter(λv.is-rat-cube-face(k;x;v);face-complex(k;K)))|| | t ∈ K)
= (Σ(||filter(λt.is-rat-cube-face(k;s;t);K)|| | s ∈ filter(λv.is-rat-cube-face(k;x;v);∂(K)))
  + Σ(||filter(λt.is-rat-cube-face(k;s;t);K)|| | s ∈ filter(λs.(¬bin-complex-boundary(k;s;K));
                                                            filter(λv.is-rat-cube-face(k;x;v);face-complex(k;K)))))
∈ ℤ
⊢ ↑isOdd(Σ(||filter(λt.is-rat-cube-face(k;s;t);K)|| | s ∈ filter(λv.is-rat-cube-face(k;x;v);∂(K))))
2
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. 2 ≤ n
5. ∀[L:ℚCube(k) List]. L ~ [] supposing ∀x:ℚCube(k). (¬(x ∈ L))
6. x : ℚCube(k)
7. ↑isOdd(||filter(λc.is-rat-cube-face(k;x;c);∂(K))||)
8. dim(x) = (n - 1 - 1) ∈ ℤ
9. Σ(||filter(λv.is-rat-cube-face(k;v;t);filter(λv.is-rat-cube-face(k;x;v);face-complex(k;K)))|| | t ∈ K)
= (Σ(||filter(λt.is-rat-cube-face(k;s;t);K)|| | s ∈ filter(λv.is-rat-cube-face(k;x;v);∂(K)))
  + Σ(||filter(λt.is-rat-cube-face(k;s;t);K)|| | s ∈ filter(λs.(¬bin-complex-boundary(k;s;K));
                                                            filter(λv.is-rat-cube-face(k;x;v);face-complex(k;K)))))
∈ ℤ
10. ↑isOdd(Σ(||filter(λt.is-rat-cube-face(k;s;t);K)|| | s ∈ filter(λv.is-rat-cube-face(k;x;v);∂(K))))
⊢ ↑isEven(Σ(||filter(λt.is-rat-cube-face(k;s;t);K)|| | s ∈ filter(λs.(¬bin-complex-boundary(k;s;K));
                                                                  filter(λv.is-rat-cube-face(k;x;v);
                                                                         face-complex(k;K)))))
Latex:
Latex:
1.  k  :  \mBbbN{}
2.  n  :  \mBbbN{}
3.  K  :  n-dim-complex
4.  2  \mleq{}  n
5.  \mforall{}[L:\mBbbQ{}Cube(k)  List].  L  \msim{}  []  supposing  \mforall{}x:\mBbbQ{}Cube(k).  (\mneg{}(x  \mmember{}  L))
6.  x  :  \mBbbQ{}Cube(k)
7.  \muparrow{}isOdd(||filter(\mlambda{}c.is-rat-cube-face(k;x;c);\mpartial{}(K))||)
8.  dim(x)  =  (n  -  1  -  1)
9.  \mSigma{}(||filter(\mlambda{}v.is-rat-cube-face(k;v;t);filter(\mlambda{}v.is-rat-cube-face(k;x;v);
                                                                                                face-complex(k;K)))||  |  t  \mmember{}  K)
=  (\mSigma{}(||filter(\mlambda{}t.is-rat-cube-face(k;s;t);K)||  |  s  \mmember{}  filter(\mlambda{}v.is-rat-cube-face(k;x;v);\mpartial{}(K)))
    +  \mSigma{}(||filter(\mlambda{}t.is-rat-cube-face(k;s;t);K)||  |  s  \mmember{}  filter(\mlambda{}s.(\mneg{}\msubb{}in-complex-boundary(k;s;K));
                                                                                                                        filter(\mlambda{}v.is-rat-cube-face(k;x;v);
                                                                                                                                      face-complex(k;K)))))
10.  \muparrow{}isEven(\mSigma{}(||filter(\mlambda{}v.is-rat-cube-face(k;v;t);filter(\mlambda{}v.is-rat-cube-face(k;x;v);
                                                                                                                  face-complex(k;K)))||  |  t  \mmember{}  K))
\mvdash{}  False
By
Latex:
((MoveToConcl  (-1)  THEN  Fold  `not`  0)
  THEN  (RWO  "odd-iff-not-even<"  0  THENA  Auto)
  THEN  HypSubst'  (-1)  0
  THEN  BLemma  `odd-plus-even`
  THEN  Auto)
Home
Index