Step
*
1
1
1
1
1
of Lemma
rat-complex-boundary-remove1
.....equality.....
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. c : ℚCube(k)
5. (c ∈ K)
6. f : ℚCube(k)
7. c1 : ℚCube(k)
8. (c1 ∈ K)
9. ¬(c1 = c ∈ ℚCube(k))
10. ↑Inhabited(c1)
11. f ≤ c1
12. dim(f) = (dim(c1) - 1) ∈ ℤ
13. ↑isOdd(||filter(λc.is-rat-cube-face(k;f;c);filter(λa.(¬brceq(k;a;c));K))||)
14. f ≤ c
15. c2 : ℚCube(k)
16. (c2 ∈ K)
17. ↑Inhabited(c2)
18. f ≤ c2
19. dim(f) = (dim(c2) - 1) ∈ ℤ
20. ↑isOdd(||filter(λc.is-rat-cube-face(k;f;c);K)||)
⊢ ||filter(λc.is-rat-cube-face(k;f;c);K)||
= (1 + ||filter(λc.is-rat-cube-face(k;f;c);filter(λa.(¬brceq(k;a;c));K))||)
∈ ℤ
BY
{ ((Assert ↑is-rat-cube-face(k;f;c) BY
(RWO "assert-is-rat-cube-face" 0 THEN Auto))
THEN DVar `K'
THEN (Assert no_repeats(ℚCube(k);K) BY
Auto)
THEN Lemmaize [5;-1;-2]
THEN Auto) }
1
1. k : ℕ
2. K : ℚCube(k) List
3. f : ℚCube(k)
4. c1 : ℚCube(k)
5. c : ℚCube(k)
6. (c ∈ K)
7. ¬(c1 = c ∈ ℚCube(k))
8. ↑isOdd(||filter(λc.is-rat-cube-face(k;f;c);filter(λa.(¬brceq(k;a;c));K))||)
9. f ≤ c
10. ↑is-rat-cube-face(k;f;c)
11. no_repeats(ℚCube(k);K)
⊢ ||filter(λc.is-rat-cube-face(k;f;c);K)||
= (1 + ||filter(λc.is-rat-cube-face(k;f;c);filter(λa.(¬brceq(k;a;c));K))||)
∈ ℤ
Latex:
Latex:
.....equality.....
1. k : \mBbbN{}
2. n : \mBbbN{}
3. K : n-dim-complex
4. c : \mBbbQ{}Cube(k)
5. (c \mmember{} K)
6. f : \mBbbQ{}Cube(k)
7. c1 : \mBbbQ{}Cube(k)
8. (c1 \mmember{} K)
9. \mneg{}(c1 = c)
10. \muparrow{}Inhabited(c1)
11. f \mleq{} c1
12. dim(f) = (dim(c1) - 1)
13. \muparrow{}isOdd(||filter(\mlambda{}c.is-rat-cube-face(k;f;c);filter(\mlambda{}a.(\mneg{}\msubb{}rceq(k;a;c));K))||)
14. f \mleq{} c
15. c2 : \mBbbQ{}Cube(k)
16. (c2 \mmember{} K)
17. \muparrow{}Inhabited(c2)
18. f \mleq{} c2
19. dim(f) = (dim(c2) - 1)
20. \muparrow{}isOdd(||filter(\mlambda{}c.is-rat-cube-face(k;f;c);K)||)
\mvdash{} ||filter(\mlambda{}c.is-rat-cube-face(k;f;c);K)||
= (1 + ||filter(\mlambda{}c.is-rat-cube-face(k;f;c);filter(\mlambda{}a.(\mneg{}\msubb{}rceq(k;a;c));K))||)
By
Latex:
((Assert \muparrow{}is-rat-cube-face(k;f;c) BY
(RWO "assert-is-rat-cube-face" 0 THEN Auto))
THEN DVar `K'
THEN (Assert no\_repeats(\mBbbQ{}Cube(k);K) BY
Auto)
THEN Lemmaize [5;-1;-2]
THEN Auto)
Home
Index