Nuprl Lemma : rat-int-bound_wf
∀[q:ℚ]. (rat-int-bound(q) ∈ {n:ℤ| n - 1 < q ∧ (q ≤ n)} )
Proof
Definitions occuring in Statement : 
rat-int-bound: rat-int-bound(q)
, 
qle: r ≤ s
, 
qless: r < s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rat-int-bound: rat-int-bound(q)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
cand: A c∧ B
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
qadd: r + s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
qless: r < s
, 
grp_lt: a < b
, 
set_lt: a <p b
, 
set_blt: a <b b
, 
band: p ∧b q
, 
infix_ap: x f y
, 
set_le: ≤b
, 
pi2: snd(t)
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
grp_le: ≤b
, 
pi1: fst(t)
, 
qadd_grp: <ℚ+>
, 
q_le: q_le(r;s)
, 
bor: p ∨bq
, 
qpositive: qpositive(r)
, 
qsub: r - s
, 
qmul: r * s
, 
lt_int: i <z j
, 
qeq: qeq(r;s)
, 
eq_int: (i =z j)
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rat-int-part_wf2, 
set_wf, 
rationals_wf, 
qle_wf, 
qless_wf, 
equal_wf, 
qadd_wf, 
int-subtype-rationals, 
qeq_wf2, 
bool_wf, 
eqtt_to_assert, 
assert-qeq, 
subtract_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
qsub-sub, 
qadd_preserves_qless, 
qsub_wf, 
qmul_wf, 
squash_wf, 
true_wf, 
qmul_one_qrng, 
mon_assoc_q, 
qadd_ac_1_q, 
qadd_comm_q, 
qinverse_q, 
mon_ident_q, 
iff_weakening_equal, 
qle_reflexivity, 
add-subtract-cancel, 
qadd_inv_assoc_q, 
qle-iff, 
qless-int, 
qadd-add, 
qadd_preserves_qle, 
qle_weakening_lt_qorder
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
productEquality, 
intEquality, 
setEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
productElimination, 
setElimination, 
rename, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairFormation, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
baseClosed, 
addEquality, 
minusEquality, 
imageElimination, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}[q:\mBbbQ{}].  (rat-int-bound(q)  \mmember{}  \{n:\mBbbZ{}|  n  -  1  <  q  \mwedge{}  (q  \mleq{}  n)\}  )
Date html generated:
2018_05_22-AM-00_27_55
Last ObjectModification:
2017_07_26-PM-06_56_53
Theory : rationals
Home
Index