Nuprl Lemma : rat-int-bound_wf

[q:ℚ]. (rat-int-bound(q) ∈ {n:ℤ1 < q ∧ (q ≤ n)} )


Proof




Definitions occuring in Statement :  rat-int-bound: rat-int-bound(q) qle: r ≤ s qless: r < s rationals: uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  subtract: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rat-int-bound: rat-int-bound(q) all: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  cand: c∧ B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_uimplies: rev_uimplies(P;Q) true: True qadd: s callbyvalueall: callbyvalueall evalall: evalall(t) qless: r < s grp_lt: a < b set_lt: a <b set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) bor: p ∨bq qpositive: qpositive(r) qsub: s qmul: s lt_int: i <j qeq: qeq(r;s) eq_int: (i =z j) squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rat-int-part_wf2 set_wf rationals_wf qle_wf qless_wf equal_wf qadd_wf int-subtype-rationals qeq_wf2 bool_wf eqtt_to_assert assert-qeq subtract_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base qsub-sub qadd_preserves_qless qsub_wf qmul_wf squash_wf true_wf qmul_one_qrng mon_assoc_q qadd_ac_1_q qadd_comm_q qinverse_q mon_ident_q iff_weakening_equal qle_reflexivity add-subtract-cancel qadd_inv_assoc_q qle-iff qless-int qadd-add qadd_preserves_qle qle_weakening_lt_qorder
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination productEquality intEquality setEquality natural_numberEquality applyEquality because_Cache sqequalRule lambdaEquality productElimination setElimination rename lambdaFormation equalityTransitivity equalitySymmetry independent_functionElimination axiomEquality unionElimination equalityElimination independent_isectElimination dependent_set_memberEquality hyp_replacement applyLambdaEquality independent_pairFormation dependent_pairFormation promote_hyp instantiate cumulativity voidElimination baseClosed addEquality minusEquality imageElimination imageMemberEquality universeEquality

Latex:
\mforall{}[q:\mBbbQ{}].  (rat-int-bound(q)  \mmember{}  \{n:\mBbbZ{}|  n  -  1  <  q  \mwedge{}  (q  \mleq{}  n)\}  )



Date html generated: 2018_05_22-AM-00_27_55
Last ObjectModification: 2017_07_26-PM-06_56_53

Theory : rationals


Home Index