Nuprl Lemma : rat-int-bound_wf
∀[q:ℚ]. (rat-int-bound(q) ∈ {n:ℤ| n - 1 < q ∧ (q ≤ n)} )
Proof
Definitions occuring in Statement : 
rat-int-bound: rat-int-bound(q), 
qle: r ≤ s, 
qless: r < s, 
rationals: ℚ, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
subtract: n - m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rat-int-bound: rat-int-bound(q), 
all: ∀x:A. B[x], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
cand: A c∧ B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
qadd: r + s, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
qless: r < s, 
grp_lt: a < b, 
set_lt: a <p b, 
set_blt: a <b b, 
band: p ∧b q, 
infix_ap: x f y, 
set_le: ≤b, 
pi2: snd(t), 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
grp_le: ≤b, 
pi1: fst(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qmul: r * s, 
lt_int: i <z j, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rat-int-part_wf2, 
set_wf, 
rationals_wf, 
qle_wf, 
qless_wf, 
equal_wf, 
qadd_wf, 
int-subtype-rationals, 
qeq_wf2, 
bool_wf, 
eqtt_to_assert, 
assert-qeq, 
subtract_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
qsub-sub, 
qadd_preserves_qless, 
qsub_wf, 
qmul_wf, 
squash_wf, 
true_wf, 
qmul_one_qrng, 
mon_assoc_q, 
qadd_ac_1_q, 
qadd_comm_q, 
qinverse_q, 
mon_ident_q, 
iff_weakening_equal, 
qle_reflexivity, 
add-subtract-cancel, 
qadd_inv_assoc_q, 
qle-iff, 
qless-int, 
qadd-add, 
qadd_preserves_qle, 
qle_weakening_lt_qorder
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
productEquality, 
intEquality, 
setEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
productElimination, 
setElimination, 
rename, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairFormation, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
baseClosed, 
addEquality, 
minusEquality, 
imageElimination, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}[q:\mBbbQ{}].  (rat-int-bound(q)  \mmember{}  \{n:\mBbbZ{}|  n  -  1  <  q  \mwedge{}  (q  \mleq{}  n)\}  )
Date html generated:
2018_05_22-AM-00_27_55
Last ObjectModification:
2017_07_26-PM-06_56_53
Theory : rationals
Home
Index