Step
*
1
1
1
1
of Lemma
square-between
1. a : ℤ
2. b : ℕ+
3. c : ℤ
4. d : ℕ+
5. 0 ≤ a
6. a * d < c * b
7. 0 < b * d ∧ (0 ≤ (a * d)) ∧ (0 ≤ ((a * d) * b * d))
⊢ ∃r:ℚ [(<a, b> < r * r < <c, d> ∧ 0 < r)]
BY
{ With ⌜let x = (a * d) * b * d in
let N = isqrt((4 * x) + 2) + 1 in
let r = isqrt((N * N) * x) in
(r + 1/N * b * d)⌝ (D 0)⋅ }
1
.....wf.....
1. a : ℤ
2. b : ℕ+
3. c : ℤ
4. d : ℕ+
5. 0 ≤ a
6. a * d < c * b
7. 0 < b * d ∧ (0 ≤ (a * d)) ∧ (0 ≤ ((a * d) * b * d))
⊢ let x = (a * d) * b * d in
let N = isqrt((4 * x) + 2) + 1 in
let r = isqrt((N * N) * x) in
(r + 1/N * b * d) ∈ ℚ
2
1. a : ℤ
2. b : ℕ+
3. c : ℤ
4. d : ℕ+
5. 0 ≤ a
6. a * d < c * b
7. 0 < b * d ∧ (0 ≤ (a * d)) ∧ (0 ≤ ((a * d) * b * d))
⊢ <a, b> < let x = (a * d) * b * d in
let N = isqrt((4 * x) + 2) + 1 in
let r = isqrt((N * N) * x) in
(r + 1/N * b * d)
* let x = (a * d) * b * d in
let N = isqrt((4 * x) + 2) + 1 in
let r = isqrt((N * N) * x) in
(r + 1/N * b * d) < <c, d>
∧ 0 < let x = (a * d) * b * d in
let N = isqrt((4 * x) + 2) + 1 in
let r = isqrt((N * N) * x) in
(r + 1/N * b * d)
3
.....wf.....
1. a : ℤ
2. b : ℕ+
3. c : ℤ
4. d : ℕ+
5. 0 ≤ a
6. a * d < c * b
7. 0 < b * d ∧ (0 ≤ (a * d)) ∧ (0 ≤ ((a * d) * b * d))
8. r : ℚ
⊢ istype(<a, b> < r * r < <c, d> ∧ 0 < r)
Latex:
Latex:
1. a : \mBbbZ{}
2. b : \mBbbN{}\msupplus{}
3. c : \mBbbZ{}
4. d : \mBbbN{}\msupplus{}
5. 0 \mleq{} a
6. a * d < c * b
7. 0 < b * d \mwedge{} (0 \mleq{} (a * d)) \mwedge{} (0 \mleq{} ((a * d) * b * d))
\mvdash{} \mexists{}r:\mBbbQ{} [(<a, b> < r * r < <c, d> \mwedge{} 0 < r)]
By
Latex:
With \mkleeneopen{}let x = (a * d) * b * d in
let N = isqrt((4 * x) + 2) + 1 in
let r = isqrt((N * N) * x) in
(r + 1/N * b * d)\mkleeneclose{} (D 0)\mcdot{}
Home
Index