Nuprl Lemma : callbyvalueall_seq-combine0

[F,L1,L2:Top]. ∀[m1:ℕ+]. ∀[m2:ℕ].
  (callbyvalueall_seq(L1;λx.x;λg.(g mk_lambdas(λout.callbyvalueall_seq(L2[out];λx.x;λg.(g F[m2]);0;m2);m1 1));0;m1) 
  callbyvalueall_seq(λi.if i <m1 then L1 else mk_lambdas(λout.(L2[out] (i m1));m1 1) fi x.x
                      g.(g mk_lambdas(F[m2];m1));0;m1 m2))


Proof




Definitions occuring in Statement :  mk_lambdas: mk_lambdas(F;m) callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m) nat_plus: + nat: ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] top: Top so_apply: x[s] apply: a lambda: λx.A[x] subtract: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat: nat_plus: + ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] mk_applies: mk_applies(F;G;m)
Lemmas referenced :  top_wf nat_plus_wf nat_wf primrec0_lemma lelt_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties nat_properties false_wf callbyvalueall_seq-combine
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation sqequalRule lambdaFormation hypothesis setElimination rename dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll because_Cache isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[F,L1,L2:Top].  \mforall{}[m1:\mBbbN{}\msupplus{}].  \mforall{}[m2:\mBbbN{}].
    (callbyvalueall\_seq(L1;\mlambda{}x.x;\mlambda{}g.(g 
                                                                    mk\_lambdas(\mlambda{}out.callbyvalueall\_seq(L2[out];\mlambda{}x.x;\mlambda{}g.(g  F[m2]);0
                                                                                                                                        ;m2);m1  -  1));0;m1) 
    \msim{}  callbyvalueall\_seq(\mlambda{}i.if  i  <z  m1  then  L1  i  else  mk\_lambdas(\mlambda{}out.(L2[out]  (i  -  m1));m1  -  1)  fi 
                                            ;\mlambda{}x.x;\mlambda{}g.(g  mk\_lambdas(F[m2];m1));0;m1  +  m2))



Date html generated: 2016_05_15-PM-02_14_20
Last ObjectModification: 2016_01_15-PM-10_17_55

Theory : untyped!computation


Home Index