Nuprl Lemma : cbva_seq_extend
∀[F,G,L:Top]. ∀[m:ℕ].
  (cbva_seq(L; λg.let x ⟵ F[g]
                  in G[g;x]; m) ~ cbva_seq(λn.if (n =z m) then mk_lambdas_fun(λg.F[g];m) else L n fi
                                           λg.G[partial_ap(g;m + 1;m);select_fun_ap(g;m + 1;m)]; m + 1))
Proof
Definitions occuring in Statement : 
select_fun_ap: select_fun_ap(g;n;m)
, 
partial_ap: partial_ap(g;n;m)
, 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
cbva_seq: cbva_seq(L; F; m)
, 
nat: ℕ
, 
callbyvalueall: callbyvalueall, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
apply: f a
, 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
mk_applies: mk_applies(F;G;m)
, 
cbva_seq: cbva_seq(L; F; m)
Lemmas referenced : 
top_wf, 
nat_wf, 
primrec0_lemma, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
false_wf, 
callbyvalueall_seq-extend
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation, 
hypothesis, 
setElimination, 
rename, 
dependent_functionElimination, 
addEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
because_Cache, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[F,G,L:Top].  \mforall{}[m:\mBbbN{}].
    (cbva\_seq(L;  \mlambda{}g.let  x  \mleftarrow{}{}  F[g]
                                    in  G[g;x];  m) 
    \msim{}  cbva\_seq(\mlambda{}n.if  (n  =\msubz{}  m)  then  mk\_lambdas\_fun(\mlambda{}g.F[g];m)  else  L  n  fi  ;
                          \mlambda{}g.G[partial\_ap(g;m  +  1;m);select\_fun\_ap(g;m  +  1;m)];  m  +  1))
Date html generated:
2016_05_15-PM-02_14_51
Last ObjectModification:
2016_01_15-PM-10_17_49
Theory : untyped!computation
Home
Index