Nuprl Lemma : cbva_seq_extend

[F,G,L:Top]. ∀[m:ℕ].
  (cbva_seq(L; λg.let x ⟵ F[g]
                  in G[g;x]; m) cbva_seq(λn.if (n =z m) then mk_lambdas_fun(λg.F[g];m) else fi ;
                                           λg.G[partial_ap(g;m 1;m);select_fun_ap(g;m 1;m)]; 1))


Proof




Definitions occuring in Statement :  select_fun_ap: select_fun_ap(g;n;m) partial_ap: partial_ap(g;n;m) mk_lambdas_fun: mk_lambdas_fun(F;m) cbva_seq: cbva_seq(L; F; m) nat: callbyvalueall: callbyvalueall ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] apply: a lambda: λx.A[x] add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] mk_applies: mk_applies(F;G;m) cbva_seq: cbva_seq(L; F; m)
Lemmas referenced :  top_wf nat_wf primrec0_lemma lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties false_wf callbyvalueall_seq-extend
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation sqequalRule lambdaFormation hypothesis setElimination rename dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll because_Cache isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[F,G,L:Top].  \mforall{}[m:\mBbbN{}].
    (cbva\_seq(L;  \mlambda{}g.let  x  \mleftarrow{}{}  F[g]
                                    in  G[g;x];  m) 
    \msim{}  cbva\_seq(\mlambda{}n.if  (n  =\msubz{}  m)  then  mk\_lambdas\_fun(\mlambda{}g.F[g];m)  else  L  n  fi  ;
                          \mlambda{}g.G[partial\_ap(g;m  +  1;m);select\_fun\_ap(g;m  +  1;m)];  m  +  1))



Date html generated: 2016_05_15-PM-02_14_51
Last ObjectModification: 2016_01_15-PM-10_17_49

Theory : untyped!computation


Home Index