FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  is_prime_factorization(abf) == i:{a..b}. 0<f(i prime(i)

is mentioned by

Thm*  n:{1...}. 
Thm*  h:({2..(n+1)}). 
Thm*  n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)
[prime_factorization_exists]
Thm*  k:{2...}, n:g:({2..k}).
Thm*   n < k+1
Thm*  
Thm*  (i:{2..k}. ni  0<g(i prime(i))
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; kh))
[prime_factorization_existsLEMMA]
Thm*  a:{2...}, b:g,h:({a..b}).
Thm*  is_prime_factorization(abg)
Thm*  
Thm*  is_prime_factorization(abh {a..b}(g) = {a..b}(h g = h
[prime_factorization_unique]
Thm*  a:b:f:({a..b}), p:.
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  prime(p)
Thm*  
Thm*  p | {a..b}(f {a..b}(f) = p{a..b}(reduce_factorization(fp))
[remove_prime_factor]
Thm*  a:b:f:({a..b}), p:.
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  prime(p p | {a..b}(f p  {a..b} & 0<f(p)
[prime_factorization_includes_prime_divisors]
Thm*  a,b:f:({a..b}), j:{a..b}.
Thm*  0<f(j)
Thm*  
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  is_prime_factorization(ab; reduce_factorization(fj))
[reduce_fac_pres_isprimefac]
Thm*  a,b:f:({a..b}). SqStable(is_prime_factorization(abf))[sq_stable__is_prime_factorization]
Thm*  f:(Prime), b:. is_prime_factorization(2; b; prime_mset_complete(f))[prime_mset_c_is_prime_f]

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

FTA Sections DiscrMathExt Doc