Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
is_prime_factorizationDef  is_prime_factorization(abf) == i:{a..b}. 0<f(i prime(i)
Thm*  a,b:f:({a..b}). is_prime_factorization(abf Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
prime_natsDef  Prime == {x:| prime(x) }
natDef   == {i:| 0i }
Thm*    Type
primeDef  prime(a) == a = 0 & (a ~ 1) & (b,c:a | bc  a | b  a | c)
Thm*  a:. prime(a Prop
prime_mset_completeDef  prime_mset_complete(f)(x) == if is_prime(x) f(x) else 0 fi
Thm*  f:(Prime). prime_mset_complete(f 

About:
ifthenelseintnatural_numbermultiplyless_thansetapplyfunction
universeequalmemberpropimpliesandorall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc