| Some definitions of interest. |
|
is_prime_factorization | Def is_prime_factorization(a; b; f) == i:{a..b}. 0<f(i) prime(i) |
| | Thm* a,b:, f:({a..b}). is_prime_factorization(a; b; f) Prop |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
reduce_factorization | Def reduce_factorization(f; j)(i) == if i=j f(i)-1 else f(i) fi |
| | Thm* a,b:, f:({a..b}), j:{a..b}.
Thm* 0<f(j) reduce_factorization(f; j) {a..b} |