Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
commentDef  Kind of comment: $kind == a
is_prime_factorizationDef  is_prime_factorization(abf) == i:{a..b}. 0<f(i prime(i)
Thm*  a,b:f:({a..b}). is_prime_factorization(abf Prop
primeDef  prime(a) == a = 0 & (a ~ 1) & (b,c:a | bc  a | b  a | c)
Thm*  a:. prime(a Prop
dividesDef  b | a == c:a = bc
Thm*  a,b:. (a | b Prop
eval_factorizationDef  {a..b}(f) ==  i:{a..b}. if(i)
Thm*  a,b:f:({a..b}). {a..b}(f 
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
int_upperDef  {i...} == {j:ij }
Thm*  n:. {n...}  Type
natDef   == {i:| 0i }
Thm*    Type
reduce_factorizationDef  reduce_factorization(fj)(i) == if i=j f(i)-1 else f(i) fi
Thm*  a,b:f:({a..b}), j:{a..b}.
Thm*  0<f(j reduce_factorization(fj {a..b}

About:
ifthenelseintnatural_numbersubtractmultiplyless_than
setlambdaapplyfunctionuniverseequal
memberpropimpliesandorallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc