Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
eval_factorizationDef  {a..b}(f) ==  i:{a..b}. if(i)
Thm*  a,b:f:({a..b}). {a..b}(f 
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
int_upperDef  {i...} == {j:ij }
Thm*  n:. {n...}  Type
natDef   == {i:| 0i }
Thm*    Type
notDef  A == A  False
Thm*  A:Prop. (A Prop
split_factor2Def  split_factor2(gxy)(u)
Def  == if u=x g(x)+g(xy) ; u=y g(y)+g(xy) ; u=xy 0 else g(u) fi
Thm*  k:{2...}, g:({2..k}), x,y:{2..k}.
Thm*  xy<k  split_factor2(gxy {2..k}

About:
ifthenelseintnatural_numberaddmultiplyless_thansetlambda
applyfunctionuniversememberpropimpliesfalseall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc