Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
split_factor1Def  split_factor1(gx)(u)
Def  == if u=x g(x)+g(xx)+g(xx) ; u=xx 0 else g(u) fi
Thm*  k:{2...}, g:({2..k}), x:{2..k}.
Thm*  xx<k  split_factor1(gx {2..k}
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
int_upperDef  {i...} == {j:ij }
Thm*  n:. {n...}  Type
natDef   == {i:| 0i }
Thm*    Type

About:
boolbfalsebtrueifthenelseintnatural_numberaddmultiplyint_eq
less_thansetapplyfunctionuniversememberimpliesall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc