| Some definitions of interest. |
|
eval_factorization | Def {a..b}(f) == i:{a..b}. if(i) |
| | Thm* a,b:, f:({a..b}). {a..b}(f) |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
int_upper | Def {i...} == {j:| ij } |
| | Thm* n:. {n...} Type |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |
|
split_factor1 | Def split_factor1(g; x)(u)
Def == if u=x g(x)+g(xx)+g(xx) ; u=xx 0 else g(u) fi |
| | Thm* k:{2...}, g:({2..k}), x:{2..k}.
Thm* xx<k split_factor1(g; x) {2..k} |