Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
complete_intseg_msetDef  complete_intseg_mset(abf)(x) == if a  x < b f(x) else 0 fi
Thm*  a,b:f:({a..b}). complete_intseg_mset(abf 
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
leltDef  i  j < k == ij & j<k
lelt_intDef  i  j < k == (ij)(j<k)
Thm*  i,j,k:i  j < k  
natDef   == {i:| 0i }
Thm*    Type
notDef  A == A  False
Thm*  A:Prop. (A Prop

About:
boolifthenelseintnatural_numberless_thansetapply
functionuniversememberpropimpliesandfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc