| Some definitions of interest. |
|
complete_intseg_mset | Def complete_intseg_mset(a; b; f)(x) == if a x < b f(x) else 0 fi |
| | Thm* a,b:, f:({a..b}). complete_intseg_mset(a; b; f) |
|
prime_factorization_of | Def f is a factorization of k
Def == (x:Prime. k<x f(x) = 0) & k = {2..k+1}(prime_mset_complete(f)) |
| | Thm* f:(Prime), k:. f is a factorization of k Prop |
|
eval_factorization | Def {a..b}(f) == i:{a..b}. if(i) |
| | Thm* a,b:, f:({a..b}). {a..b}(f) |
|
is_prime_factorization | Def is_prime_factorization(a; b; f) == i:{a..b}. 0<f(i) prime(i) |
| | Thm* a,b:, f:({a..b}). is_prime_factorization(a; b; f) Prop |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
int_upper | Def {i...} == {j:| ij } |
| | Thm* n:. {n...} Type |
|
prime_nats | Def Prime == {x:| prime(x) } |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
prime_mset_complete | Def prime_mset_complete(f)(x) == if is_prime(x) f(x) else 0 fi |
| | Thm* f:(Prime). prime_mset_complete(f) |