Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
complete_intseg_msetDef  complete_intseg_mset(abf)(x) == if a  x < b f(x) else 0 fi
Thm*  a,b:f:({a..b}). complete_intseg_mset(abf 
eval_factorizationDef  {a..b}(f) ==  i:{a..b}. if(i)
Thm*  a,b:f:({a..b}). {a..b}(f 
is_prime_factorizationDef  is_prime_factorization(abf) == i:{a..b}. 0<f(i prime(i)
Thm*  a,b:f:({a..b}). is_prime_factorization(abf Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
int_upperDef  {i...} == {j:ij }
Thm*  n:. {n...}  Type
leltDef  i  j < k == ij & j<k
prime_natsDef  Prime == {x:| prime(x) }
natDef   == {i:| 0i }
Thm*    Type
notDef  A == A  False
Thm*  A:Prop. (A Prop

About:
ifthenelseintnatural_numbermultiplyless_thansetlambdaapply
functionuniversememberpropimpliesandfalseall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc