| Some definitions of interest. |
|
complete_intseg_mset | Def complete_intseg_mset(a; b; f)(x) == if a ![](FONT/le.png) x < b f(x) else 0 fi |
| | Thm* a,b: , f:({a..b }![](FONT/dash.png) ![](FONT/then_med.png) ). complete_intseg_mset(a; b; f) ![](FONT/int.png) ![](FONT/dash.png) ![](FONT/then_med.png) ![](FONT/nat.png) |
|
eval_factorization | Def ![](FONT/pi_big.png) {a..b }(f) == i:{a..b }. i f(i) |
| | Thm* a,b: , f:({a..b }![](FONT/dash.png) ![](FONT/then_med.png) ). ![](FONT/pi_big.png) {a..b }(f) ![](FONT/int.png) |
|
is_prime_factorization | Def is_prime_factorization(a; b; f) == i:{a..b }. 0<f(i) ![](FONT/eq.png) prime(i) |
| | Thm* a,b: , f:({a..b }![](FONT/dash.png) ![](FONT/then_med.png) ). is_prime_factorization(a; b; f) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
int_upper | Def {i...} == {j: | i j } |
| | Thm* n: . {n...} Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
prime_mset_complete | Def prime_mset_complete(f)(x) == if is_prime(x) f(x) else 0 fi |
| | Thm* f:(Prime![](FONT/nat.png) ![](FONT/dash.png) ![](FONT/then_med.png) ). prime_mset_complete(f) ![](FONT/nat.png) ![](FONT/dash.png) ![](FONT/then_med.png) ![](FONT/nat.png) |