| Some definitions of interest. |
|
prime_nats | Def Prime == {x:| prime(x) } |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
prime | Def prime(a) == a = 0 & (a ~ 1) & (b,c:. a | bc a | b a | c) |
| | Thm* a:. prime(a) Prop |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |
|
prime_decider | Def is_prime(x) == prime_decider_exists{1:l}(x) |
| | Thm* x:. is_prime(x) |