| | Some definitions of interest. |
|
| prime_nats | Def Prime == {x: | prime(x) } |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| prime | Def prime(a) == a = 0 & (a ~ 1) & ( b,c: . a | b c  a | b a | c) |
| | | Thm* a: . prime(a) Prop |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |
|
| prime_decider | Def is_prime(x) == prime_decider_exists{1:l}(x) |
| | | Thm* x: . is_prime(x)  |