Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
prime_factorization_ofDef  f is a factorization of k
Def  == (x:Primek<x  f(x) = 0) & k = {2..k+1}(prime_mset_complete(f))
Thm*  f:(Prime), k:f is a factorization of k  Prop
prime_natsDef  Prime == {x:| prime(x) }
natDef   == {i:| 0i }
Thm*    Type
primeDef  prime(a) == a = 0 & (a ~ 1) & (b,c:a | bc  a | b  a | c)
Thm*  a:. prime(a Prop
notDef  A == A  False
Thm*  A:Prop. (A Prop
prime_mset_completeDef  prime_mset_complete(f)(x) == if is_prime(x) f(x) else 0 fi
Thm*  f:(Prime). prime_mset_complete(f 

About:
ifthenelseintnatural_numberaddmultiplyless_thansetapplyfunction
universeequalmemberpropimpliesandorfalseall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc