Definitions
FTA
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
trivial_factorization
Def
trivial_factorization(
z
)(
i
) == if
i
=
z
1 else 0 fi
Thm*
a
,
b
:
,
z
:{
a
..
b
}. trivial_factorization(
z
)
{
a
..
b
}
eq_int
Def
i
=
j
== if
i
=
j
true
; false
fi
Thm*
i
,
j
:
. (
i
=
j
)
nat
Def
== {
i
:
| 0
i
}
Thm*
Type
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
FTA
Sections
DiscrMathExt
Doc