Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
trivial_factorizationDef  trivial_factorization(z)(i) == if i=z 1 else 0 fi
Thm*  a,b:z:{a..b}. trivial_factorization(z {a..b}
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
natDef   == {i:| 0i }
Thm*    Type

About:
boolbfalsebtrueifthenelseintnatural_numberint_eq
setapplyfunctionuniversememberall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc