Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
eval_factorizationDef  {a..b}(f) ==  i:{a..b}. if(i)
Thm*  a,b:f:({a..b}). {a..b}(f 
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
int_upperDef  {i...} == {j:ij }
Thm*  n:. {n...}  Type
natDef   == {i:| 0i }
Thm*    Type
leDef  AB == B<A
Thm*  i,j:. (ij Prop
nat_plusDef   == {i:| 0<i }
Thm*    Type
reduce_factorizationDef  reduce_factorization(fj)(i) == if i=j f(i)-1 else f(i) fi
Thm*  a,b:f:({a..b}), j:{a..b}.
Thm*  0<f(j reduce_factorization(fj {a..b}

About:
ifthenelseintnatural_numbersubtractmultiplyless_thansetlambda
applyfunctionuniversememberpropimpliesall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc