FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
13Thm*  k:{2...}, n:g:({2..k}).
Thm*   n < k+1
Thm*  
Thm*  (i:{2..k}. ni  0<g(i prime(i))
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; kh))
[prime_factorization_existsLEMMA]
cites the following:
0Thm*  a,b:P:({a..b}Prop), n:{(a+1)..(b+1)}.
Thm*  P(n-1)  (i:{a..b}. ni  P(i))  (i:{a..b}. n-1i  P(i))
[extend_intseg_upperpart_down]
12Thm*  k:{2...}, g:({2..k}), z:{2..k}.
Thm*  prime(z)
Thm*  
Thm*  (g':({2..k}). 
Thm*  ({2..k}(g) = {2..k}(g')
Thm*  (g'(z) = 0
Thm*  (& (u:{2..k}. z<u  g'(u) = g(u)))
[can_reduce_composite_factor2]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
FTA Sections DiscrMathExt Doc