Rank | Theorem | Name |
13 | Thm* k:{2...}, n: , g:({2..k }  ).
Thm* 2 n < k+1
Thm* 
Thm* ( i:{2..k }. n i  0<g(i)  prime(i))
Thm* 
Thm* ( h:({2..k }  ).
Thm* ( {2..k }(g) =  {2..k }(h) & is_prime_factorization(2; k; h)) | [prime_factorization_existsLEMMA] |
cites the following: |
0 | Thm* a,b: , P:({a..b } Prop), n:{(a+1)..(b+1) }.
Thm* P(n-1)  ( i:{a..b }. n i  P(i))  ( i:{a..b }. n-1 i  P(i)) | [extend_intseg_upperpart_down] |
12 | Thm* k:{2...}, g:({2..k }  ), z:{2..k }.
Thm* prime(z)
Thm* 
Thm* ( g':({2..k }  ).
Thm* ( {2..k }(g) =  {2..k }(g')
Thm* (& g'(z) = 0
Thm* (& ( u:{2..k }. z<u  g'(u) = g(u))) | [can_reduce_composite_factor2] |