(7steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: eval factorization pluck 1

1. a : 
2. b : 
3. f : {a..b}
4. z : {a..b}
5. 0<f(z)
  {a..b}(f) = z{a..b}(reduce_factorization(fz))


By: Let (X = reduce_factorization(fz))
THEN
Rewrite by Thm*  a,b:j:{a..b}. {a..b}(trivial_factorization(j)) = j
Using:[j:= z]
THEN
Rewrite by Hyp:7


Generated subgoal:

1 6. X : {a..b}
7. X = reduce_factorization(fz)
  {a..b}(f)
  =
  {a..b}(trivial_factorization(z)){a..b}(reduce_factorization(fz))

5 steps

About:
intnatural_numbermultiplyless_thanapplyfunctionequalall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(7steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc