| Who Cites smts eff? |
|
smts_eff | Def smts_eff(ss;x) == smt_terms( < s ss | s.lbl = x > ) |
| | Thm* ss:Collection(smt()), x:Label. smts_eff(ss;x) Collection(Term) |
|
smt_lbl | Def t.lbl == 1of(t) |
| | Thm* t:smt(). t.lbl Label |
|
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x= y Atom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x= y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x= y Atom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = u![](FONT/and.png) y = v Default = > false Default = > false (recursive) |
| | Thm* l1,l2:Pattern. l1 = l2 ![](FONT/bool.png) |
|
smt_terms | Def smt_terms(c) == < s.term | s c > |
| | Thm* c:Collection(smt()). smt_terms(c) Collection(Term) |
|
smt | Def smt() == Label Term SimpleType |
| | Thm* smt() Type |
|
term | Def Term == Tree(ts()) |
| | Thm* Term Type |
|
ts | Def ts() == Label+Label+Label+Label+Label |
| | Thm* ts() Type |
|
st | Def SimpleType == Tree(Label+Unit) |
| | Thm* SimpleType Type |
|
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
| | Thm* Label Type |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
col_filter | Def < x c | P(x) > (x) == x c & P(x) |
| | Thm* T:Type, c:Collection(T), Q:(T![](FONT/dash.png) Prop). < i c | Q(i) > Collection(T) |
|
smt_term | Def t.term == 1of(2of(t)) |
| | Thm* t:smt(). t.term Term |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A![](FONT/dash.png) Type), p:(a:A B(a)). 1of(p) A |
|
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)![](FONT/and.png) ground_ptn(y) Default = > true (recursive) |
| | Thm* p:Pattern. ground_ptn(p) ![](FONT/bool.png) |
|
case_default | Def Default = > body(value,value) == body |
|
band | Def p![](FONT/and.png) q == if p q else false fi |
| | Thm* p,q: . (p![](FONT/and.png) q) ![](FONT/bool.png) |
|
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
|
case | Def Case(value) body == body(value,value) |
|
eq_atom | Def x= y Atom == if x=y Atom true ; false fi |
| | Thm* x,y:Atom. x= y Atom ![](FONT/bool.png) |
|
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j) ![](FONT/bool.png) |
|
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
col_map | Def < f(x) | x c > (y) == x:T. x c & y = f(x) T' |
| | Thm* T,T':Type, f:(T![](FONT/dash.png) T'), c:Collection(T). < f(x) | x c > Collection(T') |
|
col_member | Def x c == c(x) |
| | Thm* T:Type, x:T, c:Collection(T). x c Prop |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l|| 1 ![](FONT/eq.png) hd(l) A |
| | Thm* A:Type, l:A List . hd(l) A |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
|
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A![](FONT/dash.png) Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
| | Thm* E:Type. Tree(E) Type |
|
tree_con | Def tree_con(E;T) == E+(T T) |
| | Thm* E,T:Type. tree_con(E;T) Type |
|
ptn | Def Pattern == rec(T.ptn_con(T)) |
| | Thm* Pattern Type |
|
ptn_con | Def ptn_con(T) == Atom+ +Atom+(T T) |
| | Thm* T:Type. ptn_con(T) Type |