WhoCites Definitions GenAutomata Sections NuprlLIB Doc

Who Cites tag rel?
tag_relDef R(tg) == swap adjacent[tg(x) = tg(y) Label]^*
Thm* A:Type, tg:(ALabel). R(tg) (A List)(A List)Prop
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
swap_adjacent Def swap adjacent[P(x;y)](L1,L2) == i:(||L1||-1). P(L1[i];L1[(i+1)]) & L2 = swap(L1;i;i+1) A List
Thm* A:Type, P:(AAProp). swap adjacent[P(x,y)] (A List)(A List)Prop
rel_star Def (R^*)(x,y) == n:. x R^n y
Thm* T:Type, R:(TTProp). (R^*) TTProp
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
nat Def == {i:| 0i }
Thm* Type
lelt Def i j < k == ij & j < k
le Def AB == B < A
Thm* i,j:. (ij) Prop
not Def A == A False
Thm* A:Prop. (A) Prop
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
assert Def b == if b True else False fi
Thm* b:. b Prop
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
swap Def swap(L;i;j) == (L o (i, j))
Thm* T:Type, L:T List, i,j:||L||. swap(L;i;j) T List
permute_list Def (L o f) == mklist(||L||;i.L[(f(i))])
Thm* T:Type, L:T List, f:(||L||||L||). (L o f) T List
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
rel_exp Def R^n == if n=0 x,y. x = y T else x,y. z:T. (x R z) & (z R^n-1 y) fi (recursive)
Thm* n:, T:Type, R:(TTProp). R^n TTProp
case_default Def Default = > body(value,value) == body
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case Def Case(value) body == body(value,value)
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
flip Def (i, j)(x) == if x=ij ;x=ji else x fi
Thm* k:, i,j:k. (i, j) kk
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
mklist Def mklist(n;f) == primrec(n;nil;i,l. l @ [(f(i))])
Thm* T:Type, n:, f:(nT). mklist(n;f) T List
primrec Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive)
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
le_int Def ij == j < i
Thm* i,j:. (ij)
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b

Syntax:R(tg) has structure: tag_rel(A; tg)

About:
spreadproductlistconsconsnillist_ind
boolbfalsebtrueifthenelseassertintnatural_numberaddsubtractint_eq
lessless_thanatomtokenuniondecide
setlambdaapplyfunctionrecursive_def_noticerecuniverse
equalmemberpropimpliesandfalsetrueallexists!abstraction

WhoCites Definitions GenAutomata Sections NuprlLIB Doc