is mentioned by
![]() ![]() ![]() Thm* p ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( ![]() ![]() Thm* ( ![]() ![]() Thm* (( ![]() Thm* ((( ![]() ![]() Thm* ((& s(x) = ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* ((& p ![]() Thm* ((& q ![]() | [hanoi_sol2_analemma] |
![]() ![]() Thm* p ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( ![]() ![]() | [hanoi_sol2_via_general] |
![]() ![]() ![]() ![]() ![]() Thm* ![]() ![]() ![]() ![]() ![]() Thm* s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g | [hanoi_general_exists] |
![]() ![]() Thm* p ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( ![]() ![]() | [hanoi_sol2_ala_general] |
![]() ![]() Thm* p ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() Thm* (s is a Hanoi(n disk) seq on 1..z & s(1) = ( ![]() ![]() | [hanoi_sol2_via_permshift] |
![]() ![]() ![]() ![]() ![]() ![]() Thm* f(n) ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* (s1 is a Hanoi(n-1 disk) seq on a..m Thm* (& s1(a) = f ![]() ![]() ![]() Thm* (& s2 is a Hanoi(n-1 disk) seq on m+1..z Thm* (& s2(z) = g ![]() ![]() ![]() Thm* (& s1(m) = s2(m+1) Thm* (& ( ![]() ![]() ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* ((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g) | [hanoi_general_exists_lemma2] |
![]() ![]() ![]() ![]() ![]() Thm* f(n) = g(n) Thm* ![]() ![]() Thm* ( ![]() ![]() Thm* (( ![]() ![]() ![]() ![]() ![]() Thm* ((s is a Hanoi(n-1 disk) seq on a..z Thm* ((& s(a) = f ![]() ![]() ![]() Thm* ((& s(z) = g ![]() ![]() ![]() Thm* ( ![]() ![]() Thm* (( ![]() ![]() ![]() ![]() ![]() Thm* ((s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g)) | [hanoi_general_exists_lemma1] |
![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* ![]() ![]() ![]() ![]() ![]() Thm* ( ![]() Thm* ![]() ![]() Thm* s1 is a Hanoi(n disk) seq on a..m Thm* ![]() ![]() Thm* s2 is a Hanoi(n disk) seq on m+1..z Thm* ![]() ![]() Thm* (s1 @(m) s2) is a Hanoi(n disk) seq on a..z | [hanoi_seq_join_seq] |
![]() ![]() ![]() ![]() Thm* ( ![]() Thm* ![]() ![]() Thm* f(j) ![]() ![]() ![]() | [hanoi_step_at_change] |
![]() Thm* p ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() Thm* (f(a) = p & f(z) = q Thm* ( ![]() ![]() Thm* (( ![]() Thm* ((( ![]() Thm* ((& f(x+1) ![]() Thm* ((& f(y-1) ![]() Thm* ((& ( ![]() | [hanoi_pegseq_analemma] |
Def == ![]() Def == x+1 = x' ![]() ![]() ![]() | [hanoi_seq] |
In prior sections: core fun 1 int 2
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html