is mentioned by
Thm* p Thm* Thm* ( Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( Thm* ( Thm* (( Thm* ((( Thm* ((& s(x) = ( Thm* ((& p Thm* ((& q | [hanoi_sol2_analemma] |
Thm* p Thm* Thm* ( Thm* ( Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( | [hanoi_sol2_via_general] |
Thm* Thm* s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g | [hanoi_general_exists] |
Thm* p Thm* Thm* ( Thm* ( Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( | [hanoi_sol2_ala_general] |
Thm* p Thm* Thm* ( Thm* (s is a Hanoi(n disk) seq on 1..z & s(1) = ( | [hanoi_sol2_via_permshift] |
Thm* f(n) Thm* Thm* ( Thm* (s1 is a Hanoi(n-1 disk) seq on a..m Thm* (& s1(a) = f Thm* (& s2 is a Hanoi(n-1 disk) seq on m+1..z Thm* (& s2(z) = g Thm* (& s1(m) = s2(m+1) Thm* (& ( Thm* Thm* ( Thm* ((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g) | [hanoi_general_exists_lemma2] |
Thm* f(n) = g(n) Thm* Thm* ( Thm* (( Thm* ((s is a Hanoi(n-1 disk) seq on a..z Thm* ((& s(a) = f Thm* ((& s(z) = g Thm* ( Thm* (( Thm* ((s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g)) | [hanoi_general_exists_lemma1] |
Thm* Thm* ( Thm* Thm* s1 is a Hanoi(n disk) seq on a..m Thm* Thm* s2 is a Hanoi(n disk) seq on m+1..z Thm* Thm* (s1 @(m) s2) is a Hanoi(n disk) seq on a..z | [hanoi_seq_join_seq] |
Thm* ( Thm* Thm* f(j) | [hanoi_step_at_change] |
Thm* p Thm* Thm* ( Thm* (f(a) = p & f(z) = q Thm* ( Thm* (( Thm* ((( Thm* ((& f(x+1) Thm* ((& f(y-1) Thm* ((& ( | [hanoi_pegseq_analemma] |
Def == Def == x+1 = x' | [hanoi_seq] |
In prior sections: core fun 1 int 2
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html