is mentioned by
Thm* p Thm* Thm* ( Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( Thm* ( Thm* ((2^n) | [hanoi_sol2_lb] |
Thm* p Thm* Thm* ( Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( Thm* ( Thm* (( Thm* ((( Thm* ((& s(x) = ( Thm* ((& p Thm* ((& q | [hanoi_sol2_analemma] |
Thm* p Thm* Thm* ( Thm* (1of(HanoiSTD(n disks; from: p; to: q; indexing from: a)) = a+(2^n)-1) | [hanoi_general_exists_lemma2PROG_endpoint] |
Thm* p Thm* Thm* ( Thm* ( Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( | [hanoi_sol2_via_general] |
Thm* Thm* s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g | [hanoi_general_exists] |
Thm* p Thm* Thm* ( Thm* (HanoiSTD(n disks; from: p; to: q; indexing from: a)/z,s. Thm* (s is a Hanoi(n disk) seq on a..z Thm* (& s(a) = ( Thm* (& s(z) = ( | [hanoi_sol2_ala_generalPROGworks] |
Thm* p Thm* Thm* ( Thm* (HanoiSTD(n disks; from: p; to: q; indexing from: a) Thm* (= Thm* ((HanoiSTD(n-1 disks; from: p; to: otherPeg(p; q); indexing from: a)/m,s1. Thm* ((HanoiSTD(n-1 disks; from: otherPeg(p; q); to: q; indexing from: m+1) Thm* ((/z,s2. <z,HanoiHelper(n; s1; | [hanoi_sol2_ala_generalPROGcomp] |
Thm* p Thm* Thm* ( Thm* (HanoiSTD(n disks; from: p; to: q; indexing from: a) Thm* ( | [hanoi_sol2_ala_generalPROG_wf] |
Thm* p Thm* Thm* ( Thm* ( Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( | [hanoi_sol2_ala_general] |
Thm* p Thm* Thm* ( Thm* (s is a Hanoi(n disk) seq on 1..z & s(1) = ( | [hanoi_sol2_via_permshift] |
Thm* f(n) Thm* Thm* ( Thm* (s1 is a Hanoi(n-1 disk) seq on a..m Thm* (& s1(a) = f Thm* (& s2 is a Hanoi(n-1 disk) seq on m+1..z Thm* (& s2(z) = g Thm* (& s1(m) = s2(m+1) Thm* (& ( Thm* ( Thm* ((HanoiHelper(n; s1; f; s2; g)/r1,r2. Thm* (((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g)) | [hanoi_general_exists_lemma2PROGworks] |
Thm* Thm* HanoiHelper(n; s1; f; s2; g) Thm* | [hanoi_general_exists_lemma2PROG_wf] |
Thm* f(n) Thm* Thm* ( Thm* (s1 is a Hanoi(n-1 disk) seq on a..m Thm* (& s1(a) = f Thm* (& s2 is a Hanoi(n-1 disk) seq on m+1..z Thm* (& s2(z) = g Thm* (& s1(m) = s2(m+1) Thm* (& ( Thm* Thm* ( Thm* ((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g) | [hanoi_general_exists_lemma2] |
Thm* f(n) = g(n) Thm* Thm* ( Thm* (( Thm* ((s is a Hanoi(n-1 disk) seq on a..z Thm* ((& s(a) = f Thm* ((& s(z) = g Thm* ( Thm* (( Thm* ((s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g)) | [hanoi_general_exists_lemma1] |
Thm* Thm* ( Thm* Thm* s1 is a Hanoi(n disk) seq on a..m Thm* Thm* s2 is a Hanoi(n disk) seq on m+1..z Thm* Thm* (s1 @(m) s2) is a Hanoi(n disk) seq on a..z | [hanoi_seq_join_seq] |
Thm* | [hanoi_seq_join_part2] |
Thm* | [hanoi_seq_join_part1] |
Thm* (s1 @(m) s2) | [hanoi_seq_join_wf] |
Thm* s is a Hanoi(n disk) seq on a..z Thm* Thm* ( Thm* Thm* s is a Hanoi(n' disk) seq on a..z | [hanoi_seq_shallower] |
Thm* s is a Hanoi(n disk) seq on a..z Thm* Thm* ( | [hanoi_subseq] |
Thm* s is a Hanoi(n disk) seq on a..z Thm* Thm* ( | [hanoi_seq_shift] |
Thm* n Thm* Thm* ( Thm* (s is a Hanoi(n disk) seq on a..z Thm* ( Thm* ((s(?) {to n} | [hanoi_seq_deepen_seq] |
Thm* n Thm* Thm* ( Thm* (i | [hanoi_seq_deepen_loweq] |
Thm* n Thm* Thm* ( Thm* (n<i | [hanoi_seq_deepen_higheq] |
Thm* n Thm* Thm* ( | [hanoi_seq_deepen_wf] |
Thm* s is a Hanoi(n disk) seq on a..z Thm* Thm* ( Thm* (Inj(Peg; Peg; f) | [hanoi_seq_permutepegs] |
Thm* s is a Hanoi(n disk) seq on a..z Thm* Thm* ( Thm* (( Thm* ( Thm* (s is a Hanoi(n' disk) seq on a'..z') | [hanoi_seq_core] |
Thm* s is a Hanoi(n disk) seq on a..z | [hanoi_seq_wf] |
Thm* Moving disk k of n takes f to g | [hanoi_step_at_diff] |
Thm* Moving disk k of n takes f to g | [hanoi_step_at_sym] |
Thm* ( Thm* Thm* f(j) | [hanoi_step_at_change] |
Thm* Moving disk k of n takes f to g | [hanoi_step_at_unique] |
Thm* Moving disk k of n takes f to g Thm* Thm* f = ( | [hanoi_step_at_otherpeg] |
Thm* Moving disk k of n takes f to g | [hanoi_step_at_change2] |
Thm* Moving disk k of n takes f to g | [hanoi_step_at_same] |
Thm* Moving disk k of n takes f to g | [hanoi_step_at_wf] |
Thm* n Thm* Thm* ( Thm* (n<i | [hanoi_extend_higheq] |
Thm* n Thm* Thm* ( Thm* (i | [hanoi_extend_loweq] |
Thm* n | [hanoi_extend_wf] |
| [hanoi_peg_perm_comp2] | |
| [hanoi_peg_perm_comp1] | |
| [hanoi_peg_perm_is_inj] | |
| [hanoi_peg_perm_wf] | |
| [hanoi_otherpeg_diff4] | |
| [hanoi_otherpeg_diff3] | |
| [hanoi_otherpeg_diff2] | |
| [hanoi_otherpeg_diff1] | |
| [hanoi_otherpeg_sym] | |
| [hanoi_otherpeg_only] | |
| [hanoi_otherpeg_wf] | |
Thm* p Thm* Thm* ( Thm* (f(a) = p & f(z) = q Thm* ( Thm* (( Thm* ((( Thm* ((& f(x+1) Thm* ((& f(y-1) Thm* ((& ( | [hanoi_pegseq_analemma] |
| [eq_hanoi_PEG_wf] | |
Def == ( Def == & ( | [hanoi_step_at] |
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html