| Some definitions of interest. |
|
hanoi_PEG | Def Peg == {1...3} |
| | Thm* Peg Type |
|
hanoi_seq_deepen | Def (s(?) {to n} h {to n'})(x) == s(x) {to n} h {to n'} |
| | Thm* a,z:, n:, s:({a...z}{1...n}Peg), n':.
Thm* nn'
Thm*
Thm* (h:({n+1...n'}Peg). (s(?) {to n} h {to n'}) {a...z}{1...n'}Peg) |
|
hanoi_extend | Def (f {to n} f' {to n'})(i) == if in f(i) else f'(i) fi |
| | Thm* n:, f:({1...n}Peg), n':.
Thm* nn' (f':({n+1...n'}Peg). (f {to n} f' {to n'}) {1...n'}Peg) |
|
int_iseg | Def {i...j} == {k:| ik & kj } |
| | Thm* i,j:. {i...j} Type |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
le | Def AB == B<A |
| | Thm* i,j:. (ij) Prop |