|   | Some definitions of interest. | 
 | 
| hanoi_PEG | Def  Peg == {1...3} | 
 | |   | Thm*  Peg   Type | 
 | 
| hanoi_extend | Def  (f {to n}   f' {to n'})(i) == if i  n  f(i) else f'(i) fi | 
 | |   | Thm*   n: , f:({1...n}  Peg), n': .
 Thm*  n n'    ( f':({n+1...n'}  Peg). (f {to n}   f' {to n'})   {1...n'}  Peg) | 
 | 
| int_iseg | Def  {i...j} == {k: | i k & k j } | 
 | |   | Thm*   i,j: . {i...j}   Type | 
 | 
| nat | Def    == {i: | 0 i } | 
 | |   | Thm*      Type | 
 | 
| le | Def  A B ==  B<A | 
 | |   | Thm*   i,j: . (i j)   Prop |