LogicSupplement Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  P & Q == PQ

is mentioned by

Thm*  R:(AAProp). 
Thm*  (EquivRel x,y:AR(x,y))
Thm*  
Thm*  (x:AR(x,x) & (y:AR(x,y R(y,x) & (z:AR(y,z R(x,z))))
[equivrel_characterization]
Thm*  {x:{x:AP(x) }| Q(x) } =ext {x:AP(x) & Q(x) }[exteq_subset_vs_and]
Thm*  P XOR Q  (Q  P) & Dec(P)[xor_vs_neg_n_dec]
Def  x is the u:AP(u) == P(x) & (u:AP(u u = x)[is_the]
Def  P XOR Q == P  Q & (P & Q)[xor]
Def  A =ext B == (x:Ax  B) & (x:Bx  A)[exteq]

In prior sections: core int 1 bool 1 rel 1

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

LogicSupplement Sections DiscrMathExt Doc