(16steps total)
PrintForm
Definitions
LogicSupplement
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
A compact characterization of equivalence relations.
At:
equivrel
characterization
A
:Type,
R
:(
A
A
Prop).
(EquivRel
x
,
y
:
A
.
R
(
x
,
y
))
(
x
:
A
.
R
(
x
,
x
) & (
y
:
A
.
R
(
x
,
y
)
R
(
y
,
x
) & (
z
:
A
.
R
(
y
,
z
)
R
(
x
,
z
))))
By:
UnivCD THEN Analyze 0 THEN Analyze 0
Generated subgoals:
1
1.
A
: Type
2.
R
:
A
A
Prop
3. EquivRel
x
,
y
:
A
.
R
(
x
,
y
)
x
:
A
.
R
(
x
,
x
) & (
y
:
A
.
R
(
x
,
y
)
R
(
y
,
x
) & (
z
:
A
.
R
(
y
,
z
)
R
(
x
,
z
)))
7
steps
2
1.
A
: Type
2.
R
:
A
A
Prop
3.
x
:
A
.
R
(
x
,
x
) & (
y
:
A
.
R
(
x
,
y
)
R
(
y
,
x
) & (
z
:
A
.
R
(
y
,
z
)
R
(
x
,
z
)))
EquivRel
x
,
y
:
A
.
R
(
x
,
y
)
8
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(16steps total)
PrintForm
Definitions
LogicSupplement
Sections
DiscrMathExt
Doc