Definitions
LogicSupplement
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assert
Def
b
== if
b
True else False fi
Thm*
b
:
.
b
Prop
decidable
Def
Dec(
P
) ==
P
P
Thm*
A
:Prop. Dec(
A
)
Prop
iff
Def
P
Q
== (
P
Q
) & (
P
Q
)
Thm*
A
,
B
:Prop. (
A
B
)
Prop
not
Def
A
==
A
False
Thm*
A
:Prop. (
A
)
Prop
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
LogicSupplement
Sections
DiscrMathExt
Doc